Prediction of Bike Sharing Demand
نویسنده
چکیده
Bike sharing systems have been gaining prominence all over the world with more than 500 successful systems being deployed in major cities like New York, Washington, London. With an increasing awareness of the harms of fossil based mean of transportation, problems of traffic congestion in cities and increasing health consciousness in urban areas, citizens are adopting bike sharing systems with zest. Even developing countries like India are adopting the trend with a bike sharing system in the pipeline for Karnataka. This paper tackles the problem of predicting the number of bikes which will be rented at any given hour in a given city, henceforth referred to as the problem of ‘Bike Sharing Demand’. In this vein, this paper investigates the efficacy of standard machine learning techniques namely SVM, Regression, Random Forests, Boosting by implementing and analyzing their performance with respect to each other. This paper also presents two novel methods, Linear Combination and Discriminating Linear Combination, for the ‘Bike Sharing Demand’ problem which supersede the aforementioned techniques as good estimates in the real world.
منابع مشابه
Prediction of Bike Sharing Systems for Casual and Registered Users
In this project, two different approaches to predict Bike Sharing Demand are studied. The first approach tries to predict the exact number of bikes that will be rented using Support Vector Machines (SVM). The second approach tries to classify the demand into 5 different levels from 1 (lowest) to 5 (highest) using Softmax Regression and Support Vector Machines. Index Terms –regression, classific...
متن کاملMulti-Agent System for Demand Prediction and Trip Visualization in Bike Sharing Systems
This paper proposes a multi agent system that provides visualization and prediction tools for bike sharing systems (BSS). The presented multi-agent system includes an agent that performs data collection and cleaning processes, it is also capable of creating demand forecasting models for each bicycle station. Moreover, the architecture offers API (Application Programming Interface) services and ...
متن کاملDemand Prediction of Bicycle Sharing Systems
Bike sharing system requires prediction of bike usage based on usage history to re-distribute bikes between stations. In this study, original data was collected around Washington D.C. area in 2011 and 2012. Original data is processed by several feature engineering approaches based on analysis and understanding of the data. Ridge linear regression, support vector regression (εSVR), random forest...
متن کاملA Multi-commodity Pickup and Delivery Open-tour m-TSP Formulation for Bike Sharing Rebalancing Problem
Bike sharing systems (BSSs) offer a mobility service whereby public bikes, located at different stations across an urban area, are available for shared use. An important point is that the distribution of rides between stations is not uniformly distributed and certain stations fill up or empty over time. These empty and full stations lead to demand for bikes and return boxes that cannot be fulfi...
متن کاملPredicting Bike Usage for New York City's Bike Sharing System
Bike sharing systems consist of a fleet of bikes placed in a network of docking stations. These bikes can then be rented and returned to any of the docking stations after usage. Predicting unrealized bike demand at locations currently without bike stations is important for effectively designing and expanding bike sharing systems. We predict pairwise bike demand for New York City’s Citi Bike sys...
متن کامل